
The Real-Time ObjectAgent Software Architecture for
Distributed Satellite Systems1

Derek M. Surka

Princeton Satellite Systems
150 S. Washington St. Suite 201

Falls Church, VA 22046
703-237-8484

dmsurka@psatellite.com

Margarita C. Brito and Christopher G. Harvey
Princeton Satellite Systems

33 Witherspoon St.
Princeton, NJ 08542

609-279-9606
{megui, charvey}@psatellite.com

1
 0-7803-6599-2/01/$10.00 © 2001 IEEE

Abstract—The ObjectAgent system is being developed to
create an agent-based software architecture for autonomous
distributed systems. Agents are used to implement all of the
software functionality and communicate through simplified
natural language messages. Decision-making and fault
detection and recovery capabilities are built-in at all levels.

During the first phase of development, ObjectAgent was
prototyped in Matlab. A complete, GUI-based environment
was developed for the creation, simulation, and analysis of
multi-agent, multi-satellite systems. Collision avoidance and
reconfiguration simulations were performed for a cluster of
four satellites.

ObjectAgent is now being ported to C++ for demonstration
on a real-time, distributed testbed and deployment on
TechSat 21 in 2003. The present architecture runs on a
PowerPC 750 running Enea’s OSE operating system. A
preliminary demonstration of using ObjectAgent to perform
a cluster reconfiguration of three satellites was performed in
November 2000.

 TABLE OF CONTENTS

 1. INTRODUCTION
 2. AGENTS FOR SPACECRAFT AUTONOMY
 3. OBJECTAGENT MATLAB ARCHITECTURE
 4. REAL-TIME C++ OBJECTAGENT ARCHITECTURE
 5. SIMPLE REAL-TIME OA DEMONSTRATION

6. CURRENT STATUS & FUTURE WORK
7. ACKNOWLEDGMENTS
8. REFERENCES

 1. INTRODUCTION

There is an increasing desire in many organizations,
including NASA and the Department of Defense, to use
constellations or fleets of autonomous spacecraft working
together to accomplish complex mission objectives. Some of
the many advantages of using distributed satellite systems
include greater performance, lower cost, and improved fault
tolerance, reconfigurability and upgradability. Coordinating
the activities of all the satellites in a constellation is not a
trivial task, however, and the use of software agents for this
task is a promising technology.

Princeton Satellite Systems is developing the ObjectAgent
(OA) and TeamAgent systems under Air Force Research
Laboratory (AFRL) Phase II Small Business Innovative
Research (SBIR) funding to create an agent-based software
architecture that is designed for autonomous, distributed
systems. Agents are used to implement all of the software
functionality and communicate through simplified natural
language messages. Decision-making and fault detection and
recovery capabilities are also built-in at all levels.

The TeamAgent system applies ObjectAgent to the problem
of controlling multiple cooperative satellites. TeamAgent
enables agent-based multi-satellite systems to fulfill complex
mission objectives by autonomously making high- and low-
level decisions based on the information available to any
and/or all agents in the satellite system. Simulations of
multi-agent systems for multiple satellites have been
developed using TeamAgent to illustrate collision avoidance
and reconfiguration for a four-satellite constellation. Agents
were used to monitor for collisions, reconfigure the fleet,
and optimize fuel usage across the cluster during
reconfiguration.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2001 2. REPORT TYPE

3. DATES COVERED
 00-00-2001 to 00-00-2001

4. TITLE AND SUBTITLE
The Real-Time ObjectAgent Software Architecture for Distributed
Satellite Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Princeton Satellite Systems,33 Witherspoon Street,Princeton,NJ,08542

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Previous papers have addressed the Matlab prototyping of
ObjectAgent/TeamAgent and have described the research
into agent organizations for distributed satellite control [7]
[8]. These papers have also described the various multi-
agent, multi-satellite simulations that have been assembled.

This paper describes the status of the real-time C++
development of ObjectAgent/TeamAgent. The first section
describes the motivation for using software agents to control
distributed satellite systems. It also describes the philosophy
behind the development of ObjectAgent. The second section
provides an overview of the agent architecture as
implemented in Matlab. The third section describes the C++
implementation of this architecture and compares it to the
Matlab prototype. Particular emphasis is placed on the
message processing and the multi-threaded nature of the
C++ agents. The effects of real-time operating system
selection are also discussed. The fourth section describes a
simple demonstration of real-time ObjectAgent. Finally, the
current status of the ObjectAgent port from Matlab to C++
is presented and directions for future work are provided.

 2. AGENTS FOR SPACECRAFT AUTONOMY

The use of software agents is becoming increasingly popular
as a method to improve the level of spacecraft autonomy.
There is no consensus on the exact definition of a software
agent, but a standard definition is given by Weiss [9]:

An agent is a computational entity that can be viewed
as perceiving and acting upon its environment and
that is autonomous in that its behavior at least
partially depends on its own experience.

Bradshaw [3] and Knapik and Johnson [6] provide good
overviews of the many different definitions used by
researchers in the fields of artificial intelligence (AI) and
computer science.

The major benefit of agents is their autonomy. Intelligent
agents can be given high level goals and then autonomously
determine the appropriate actions to fulfill these goals. This
can include interaction and collaboration with other agents.
Agent based software is a form of distributed programming
and as such, it maps naturally onto the requirements of
distributed spacecraft [7]. Part of the purpose of the
development of ObjectAgent is to research and demonstrate
those areas where agent-based software can benefit
distributed satellite systems.

For example, it is easy to imagine each spacecraft having a
higher-level agent that coordinates its activities with those of
other spacecraft. This is important for those proposed
missions that require multiple cooperative satellites to
achieve their objectives, such as space-based
interferometery. The agents and not the ground operators
will be responsible for activity coordination.

Additionally, cluster-level agents will enable operators to
command the entire cluster as a “virtual” satellite by
decomposing high-level commands or goals into individual
spacecraft commands that can be sent to the appropriate
spacecraft-level agents. This can be done without the
operator having detailed information about the state of each
spacecraft. Although the use of software agents may not be
the only method to enable a fleet of spacecraft to work
together, it appears to be very promising, especially for
larger clusters of satellites.

In addition to enabling more complex cooperation among
satellites, there are many potential benefits to using agents
onboard individual spacecraft. These advantages are
analogous to those for clusters since a similar decomposition
of intelligence and software functionality into hierarchical
agents can be performed on each spacecraft. These benefits
include:

• Greatly increasing the level of autonomy onboard the
spacecraft by flowing down high level tasks;

• Making flight software flexible and easy to adapt
because the agents can be dynamically loaded;

• Improving the reliability of spacecraft and fleets of
spacecraft by incorporating fault detection at both high
and low levels; and

• Reducing the need for large ground support
organizations.

NASA’s Deep Space 1 Remote Agent Experiment

The first demonstration of agents used for control onboard
spacecraft was NASA’s Deep Space 1 (DS-1) Remote Agent
Experiment [1]. During the experiment in May 1999, the
spacecraft was sent a list of goals instead of the usual
detailed sequence of commands to execute. The Remote
Agent (RA) software generated a plan to accomplish these
goals and then executed this plan, monitoring for hardware
faults during execution. Despite some minor glitches, the
Remote Agent Experiment was a complete success and
achieved 100% of its validation goals [2].

The RA software is installed as a layer on top of the regular
flight software, an approach that requires the agent to
process a lot of information and to be very intelligent. The
complexity of using this approach to space flight software
was evident when most of its capabilities were stripped off
prior to launch and replaced by the more conventional Mars
Pathfinder software [5]. (Additional capability was uploaded
after launch.)

ObjectAgent Software for Autonomous Spacecraft

The ObjectAgent Software Architecture goes beyond the
DS-1 remote agent experiment by using agents as the basis
of the system rather than as a top layer. This is a key feature
that distinguishes ObjectAgent from other agent

architectures. Each agent is a multi-threaded process and
this architecture allows decision-making, including fault
detection and recovery capabilities, to be built in at all levels
of the software. This in turn alleviates the need for
extremely intelligent high-level agents and simplifies the
software interfaces.

A fundamental component of ObjectAgent is the flexible
messaging architecture that provides a reliable method for
agent-to-agent communication both on a single processor
and across networks. Each message has a content field
written in natural language that is used to identify the
purpose of the message and its contents. Natural language
was selected so that users could easily send messages or
commands to the agents as well as understand the messages
being sent between agents. The latter is important for
debugging purposes. Because all agent-to-agent
communication is through messages, it does not matter
where the agent is located. Thus, this architecture can
encompass multiple processors on one spacecraft or multiple
processors on different spacecraft and on the ground.

Two additional advantages of using agents for all software
functionality are increased flexibility and robustness.
Robustness is improved in ObjectAgent because all agents
are endowed with a set of basic survival skills. Each agent
has knowledge of its skills, inputs, and outputs, and is
capable of automatically configuring itself upon launch. It
will automatically seek out other agents who can provide it
with the inputs it needs as well as other agents who need its
outputs. In this sense, an ObjectAgent system is self-
organizing.

These same survival skills enable agents to be dynamically
added to a system to improve the system capabilities or
recover from a failure. The flexible and reconfigurable
messaging architecture provides a common software
interface that is vital to this ability to dynamically add or
change software. Since all software is implemented as agents
with the common messaging interface, all software can be
easily replaced or updated. This messaging architecture also
helps the system to recover from failures.

Another key feature of ObjectAgent is it allows the user to
specify the complexity of the agents and agent organizations
and does not constrain users to a predefined notion of an
agent. The user performs the decomposition of the system
into agents. This allows greater flexibility, extensibility,
upgradability, and compatibility with existing systems. If the
user desires a system that runs traditional flight software,
this software can be encapsulated in a single agent. This
agent would then be the only piece of software running on
the flight computer. If the user wishes to make use of the
advantages of an agent-based system, however, she can
distribute the traditional flight software functionality among
multiple agents in any fashion she desires.

Although artificial intelligence techniques are not built in to
the ObjectAgent core, the OA system architecture allows AI
techniques to be incorporated at any or all levels of the
software. These techniques can even be added after the
system is in operation, which is not possible with today’s
flight systems.

Finally, special attention has been paid to developing a
system that is easy-to-use and simplifies the flight software
creation process. ObjectAgent is an integrated approach to
agent and flight software design, making extensive use of
simplified natural language and graphical user interfaces.

The following sections provide more detailed information
about how this ObjectAgent architecture is implemented in
both Matlab and C++.

 3. OBJECTAGENT MATLAB ARCHITECTURE

ObjectAgent was first prototyped in Matlab for a number of
reasons that benefit both OA architecture developers and
end-users.

For the OA architecture developers, the use of Matlab
enabled the proposed agent architecture to be rapidly
prototyped and tested. An integrated development
environment (IDE) for ObjectAgent was easily created using
the Matlab GUI functions and this design environment is
relatively platform independent, limited only by the
platforms that Matlab supports.

OA end-users can quickly verify their agent and algorithm
designs as well as take advantage of the wide variety of
Matlab-based software and toolboxes in existence, including
PSS’ Spacecraft Control Toolbox. In the future, OA users
will be able to automatically convert their Matlab agents into
C++ agents that can be deployed in real-time systems.

There are however, some limitations to using Matlab for the
simulation of agents. Matlab is a single-threaded application
so agents cannot be multi-threaded. Message passing must
be emulated since Matlab does not have built-in support for
messaging. These limitations preclude the use of Matlab for
multi-agent system performance verification.

Despite these limitations, the use of Matlab for rapid
prototyping and platform independence has made it a very
beneficial tool for the development of ObjectAgent and
multi-agent systems.

Matlab Agent Architecture

Matlab agents are composed of skills that are written as
Matlab m-files. Generally, each skill corresponds to one
basic function, has inputs and outputs, and triggers one or
more actions. There is a specific format for these skill files
and each skill contains a data structure field that describes

the assigned priority, the update period, the input and output
interfaces, and the communication method.

The primary action for each skill is an update action that is
run every time the agent invokes the skill. This update action
can make use of any Matlab function or m-file and dictates
the skill functionality. Typically, the update function will
process the skill inputs and generate the appropriate outputs
that will be used by other skills within the same agent or sent
to other agents through messages.

There is no limit to the number of skills an agent can possess
and there is a set of common skills required by each agent.
One such skill is the RegisterSkill. Each agent must register
with its home “Message Center” before it can send or
receive messages or perform any task processing. The next
two subsections describe this messaging architecture and
task processing in greater detail.

Messaging Architecture

This section describes in greater detail the format of the
messages used in the Matlab version of ObjectAgent for all
agent communication. Note that this is also the format for all
agent tasks (described in the next subsection.) The message
format presently in use is proprietary and uses simplified
natural language.

The important characteristics of the messages used in
ObjectAgent are:

• Each message has a content. The content tells the agent
what the message is about. It is a string composed of a
subset of natural language structured in one of two
formats:

1. verb / noun phrase / preposition / noun phrase
e.g. “receive data for Agent(Skill)”

2. verb / noun phrase / preposition / noun phrase /
preposition / noun phrase
e.g. ‘find source for data for Agent(Skill)’

There are presently 14 verbs understood by the agents
and users can expand this list.

• Each message has data associated with it. The data can
be anything that one agent wants to send to another. For
example, this could be the parameter values that are
being sent to another agent (such as in the first example
above) or it could be the name of the desired
information (such as in the second example.)

• Each message is time-tagged. This makes it easy for
agents to determine if the data is valid.

• Each message has fields indicating to and from whom
the message is being sent.

• Each message has a priority associated with it. Higher
priority messages are processed first.

This message format can easily be adapted to other industry
formats.

As mentioned previously, Matlab does not provide built-in
support for message passing so the messaging between
agents must be emulated. This is achieved by the creation of
a “message center” that controls the flow of messages
between agents. Every agent must register with its home
message center before it can send or receive messages or
perform any task processing. The message center is
responsible for routing messages between agents.

Figure 1 shows how this message passing architecture is
implemented in Matlab. A collision avoidance agent on one
spacecraft is sending a MoveCollAvoid message
(MoveCollAvoid is a user-defined verb used in [7] and [8])
to an orbit maneuver agent on another spacecraft. This
message is routed by the message center on the first
spacecraft (MC1) to the message center on the second
spacecraft (MC2) and then on to the appropriate agent.

Coll-
Avoidance-

Skill

update

update

m1

MC 1 MC 4

Orbit-
Maneuver-

Skill

MoveColl-
Avoid

MoveCollAvoid

m1

m1:
MoveCollAvoid

m1
m2

m2:
transmit y_4

Skill

Task

Verb

MessageCollision
avoidance agent 1

Orbit maneuver
agent 4

Figure 1. Example of the Matlab Messaging Architecture

Agent Task Processing

Matlab agents are single-threaded and their actions are
based on the processing of their task lists at every time step.
Tasks and messages have the same data structure, making
for a fast and clean implementation and enabling tasks to be
sent to the agents in messages. Each agent dynamically
maintains its own task list and at every time step, the entire
task list is processed in the manner shown in Figure 2.

m1

Transmit
Message

m1

Receive
Message

task1
m1

task2

Add Message
to Task List

task1
m1

task2

Process
Tasks

m2

Transmit
Message

m1

Transmit
Message

m1m1

Transmit
Message

m1

Receive
Message

m1m1

Receive
Message

task1
m1

task2

Add Message
to Task List

task1
m1

task2

task1
m1

task2

task1
m1

task2

Add Message
to Task List

task1
m1

task2

Process
Tasks

task1
m1

task2

task1
m1

task2

Process
Tasks

m2

Transmit
Message

m2m2

Transmit
Message

Figure 2. Agent Task Processing

First, the agent’s incoming messages are added to its task
list. This new task list is then prioritized and the
tasks/messages with highest priority are processed first. The
tasks are processed through natural language processing in
which the verb determines the actions taken by the agent.
These tasks, when processed, can cause a message to be
created and sent, and/or actions to be taken by the agent that
changes its internal state.

Figure 1 shows an example from [8] where the task “update
CollAvoidSkill” creates the message “MoveCollAvoid
sc_4” (m1) and sends it to the orbit maneuver agent because
a possible collision involving spacecraft #4 was detected.
The verb function MoveCollAvoid is then processed by the
orbit maneuver agent, which causes the update action of its
OrbitManeuverSkill to be run. Additionally, message m2 is
transmitted back to the collision avoidance agent 1.

Creating Matlab Agents

The ObjectAgent Matlab design environment uses an
integrated graphical user interface to speed development.
Figure 3 shows the primary interface. The user can design
and simulate agents from this window.

Figure 3. Agent Developer GUI

Agent skills are available in a library database making it
easy to reuse code. Skills are added to an agent by selecting
them from a checkbox list in the top right-center of the
window. Skill parameter values can be changed from their
default values in the bottom half of the window.

Similar GUIs are available to specify agent communications,
relationships, and error reporting.

 4. REAL-TIME C++ OBJECTAGENT ARCHITECTURE

The overall objective of our research is to use ObjectAgent
to control real-time, distributed systems. This requires that
the OA architecture be ported to a real-time programming
language. C++ was selected because its object-oriented
nature meshes nicely with the OA design philosophy. It was
selected over Java and other object-oriented languages
because it is more commonly used for the control of real-
time systems and because of our greater experience with
C++.

After selecting the programming language, it was necessary
to select a target real-time operating system (RTOS) and
embedded processor. The current baseline processor is the
PowerPC 750 and the current architecture is designed to run
on top of Enea’s OSE operating system. The PowerPC 750
was selected because of its high speed and memory
capabilities and because a rad-hard version will soon be
available from Lockheed-Martin.

RTOS Selection

Enea’s OSE was selected as the operating system for
ObjectAgent for several reasons. OSE is a message based
operating system designed for distributed architectures with
many features that lend itself to the ObjectAgent
architecture. These features include multi-threading, very
good process and memory management, and dynamic
process loading, and are discussed in greater detail below.

Message based RTOS simplifies the design of distributed
applications by enabling designers to implement their
applications using high-level constructs such as state
transitions and message passing. They typically provide
built-in safety features that make it ideal for distributed
applications that require high availability and security.

Unlike traditional embedded operating systems, which
utilize lightweight tasks to partition complex activity and
semaphores to establish communications, the messaging
RTOS use memory-protected processes and message-based
communications. This approach makes it easier to
conceptualize complex applications and distribute
programming responsibilities across large development
teams. The messaging RTOS model also makes it easier to
compartmentalize critical operations and data, thereby
enhancing reliability and security.

The following subsections describe how OSE differentiates
itself from traditional kernels like VxWorks. We selected
OSE as our initial target RTOS because these features better
support distributed systems and simplify the work that must
be done by our developers.

Process Management—Processes may be grouped into
blocks, each with its own memory pool. While other kernels

may schedule tasks running in a shared memory
environment, OSE knows what resources each owns,
including such things as file descriptors, sockets, as well as
all memory resources, and supervises to avoid conflicts. If
tasks die, the kernel can reclaim the resources automatically.
Additional memory features are discussed in the Memory
Management Unit (MMU) support section.

Interprocess Communication—OSE is a true message
passing OS which features full central processor unit (CPU)
or destination transparent messaging. In this sense, it is
designed for distributed processing applications. The
messaging schema naturally supports fault tolerant and/or
high availability designs, in the following fashion:

• Processes send messages to other processes

• Processes dynamically bind to other processes

• OSE supervises all communications between processes;
if delivery fails, or a process dies (or is killed), all
connected processes are notified so they may take
corrective action. One corrective action could be to
establish a connection with a backup process (or board)
or messages may be dynamically re-routed to alternate
destinations.

Error Handling—Error handling is managed by the process,
block, or system error handlers. This simplifies code
development, and offers a hierarchical approach to error
management. This will facilitate agent error handling.

MMU Support—Integrated MMU support means, among
other things, processes or blocks (groups of processes) can
be partitioned into MMU segments. Depending on the level
of security desired, messages passed between processes
could either be copied between segments or accessed by
reference. The latter will be important when large amounts
of data must be manipulated. This would reduce the need for
shared memory pools.

Dynamic Software Upgrades—Software can be dynamically
upgraded even to the individual process level, without
stopping the rest of the system. This is enabled by the fact
that processes bind (and detach) from one another
dynamically. This feature is important for adding and
removing agents dynamically.

Agent Architecture

Each C++ agent is an object of a specific Agent subclass. A
generic C++ Agent class has been created and all Agent
subclasses inherit from this class. The generic Agent class
contains a number of the various survival skills required by
each agent, such as the abilities to communicate through
messages and to seek for input sources. The Agent class
(and all of its subclasses) contains an Update function in
which all processing for the main agent process takes place.

C++ agents are composed of skills that are written as C++
classes. Generally, each skill acts in the same fashion as
those skills found in the Matlab agent architecture. Each
skill class contains data fields that describe the assigned
priority, the update period, the input and output interfaces,
and the communication method.

The primary action for each skill is an update function that is
executed every time any agent invokes the skill. This update
function can make use of any C++ function or class and
dictates the skill functionality. The update function operates
in the same fashion as the update function described in the
Matlab agent architecture.

The skills of an individual agent can be grouped into
activities. Each activity runs in a separate thread (or OSE
process) and the threads of one agent share common
memory. The activities are defined in the specific Agent
subclasses.

There is no memory sharing between agents. All
synchronization of agents is by messaging. Within an agent,
other mechanisms may be used.

OSE Agent Implementation

Figure 4 shows the C++ implementation of an agent in OSE.
An agent consists of three primary OSE processes — the
Main Agent process, the Dispatcher process, and the
Collection Center process — and any number of additional
skill or activity processes.

The Main Agent process is the first process to run when an
agent is initialized. This process is responsible for creating
the common objects required by the agent and for starting
the other processes. Upon initialization, the Main process
first creates an instance of a specific Agent subclass. The
Main process then creates numerous instances of a Queue
class that serve as inboxes and outboxes for agent
communications. These queues store Message objects and
are discussed in greater detail in the next subsection.

After the creation of the message queues, the Skill objects
used by the agent are created. This is followed by the
creation of a table mapping input names to the appropriate
skills. The Collection Center and Dispatcher processes are
then created and are passed pointers to the appropriate
queues. Inboxes are used by the Collection Center to pass
incoming messages to the appropriate processes. The
outboxes contain messages that are generated by the agent
and that are to be sent out by the Dispatch process.

Finally, any other skill or activity processes are created.
Each skill process has an inbox and an outbox associated
with it. After initialization, the Main Agent process
continues to run and repeatedly calls the agent object’s
update function. The Main Agent process is a prioritized
process.

Messaging Architecture

OSE provides built-in support for message passing through
the use of signals. Signals are passed from one OSE process
to another and the signal types are user-definable. A C++
Message class has been defined for agent messaging. The
important characteristics of this Message class are the same
as those described in the Matlab agent architecture although
some modifications have been made to the implementation.

The first modification is that messages are no longer
processed based on priority. They are processed on a first in,
first out (FIFO) basis, which is partly due to the way OSE
handles signals. The second modification is that there is no
broadcast capability at present, again because of limitations
with OSE. We will implement some form of broadcasting
ourselves.

Two additional fields have also been added to the class to
identify the verb and the type of data being sent. Since all
message data is sent as a character string, it is necessary that
the receiving agent know the type of data being sent in order
to be able to reconstruct it. The verb has been stripped out of
the message content and placed in a separate enumerated
field to reduce the need for an agent to use natural language
processing (NLP) to understand each message. Simple
messages such as “request” or “transmit” will not require
NLP although more complex messages will still make use of
this function. The user will still interface with the agents
through natural language by virtue of a pre-processor that
will convert Matlab-type OA messages into C++ objects and
vice versa. We had contemplated using a different OSE

signal type for each verb but that would have made the
architecture too OS-specific.

Figure 4 also shows the messaging architecture as
implemented in C++. Each agent creates Dispatcher and
Collection Center processes that handle outgoing and
incoming messages, respectively. When these processes are
created, pointers to either the agent’s inboxes or outboxes
are sent to each. The queues are used as shared memory
between the agent processes and its Dispatcher and
Collection Center.

To send a message, an agent or skill process first creates a
Message object and places this object in its outbox to be
sent by the Dispatcher. Dispatcher processes always send
their messages to another agent’s Collection Center process.
Since each message contains a destination, the Dispatcher is
able to find the destination Agent’s Collection Center
process and send the outgoing message (via an OSE signal)
to it.

Unfortunately, message objects cannot be passed within an
OSE signal. Therefore, when a Message object is generated
by an Agent to be dispatched, it first must be decomposed
by the Dispatcher into simple data types such as character
buffers, integers, and floating point values. These
decomposed values can then be stored and sent within OSE
signals.

When this type of signal is received by a Collection Center
process, a new message object is created by the Collection
Center with the appropriate data fields. Based upon the verb

Main Process

Dispatch Center

Destination

Verb

Content
.
.
.

Skill 1
Inbox

Skill 1
Outbox

Skill 1
Process

Skill 2
Inbox

Skill 2
Outbox

Skill 2
Process

Skill N
Inbox

Skill N
Outbox

Skill N
Process

Main
Inbox

Main
Outbox

Collection Center

Destination

Verb

Content
.
.
.

Figure 4. C++ Agent Architecture

and content, this message is then stored in the inbox queue
of the appropriate agent process. If the verb is neither
“request” nor “transmit”, the message is passed to the Main
Agent for further processing. Otherwise, the Collection
Center compares the name of the input/output (contained in
the message content) with the table mapping inputs and
outputs to skills to determine the inbox(es) into which the
message should be placed. The agent and skill processes
poll their inboxes periodically, dequeue incoming messages,
and execute the code indicated by the message object.

This architecture enables all natural language processing to
be localized within the Main Agent process and invoked
only when necessary. For the simple demonstrations
presented to date, NLP has not been required.

Agent Processing

Unlike the Matlab architecture in which an agent is single-
threaded and processes a task list every time step, C++
agents are multi-threaded and their actions are based on
priority within the operating system.

Agents are designed to carry out certain activities. These
activities are implemented as OSE processes and spawned
by agents. Activity processes accomplish their goal by using
one or more instances of particular skills. Skill subclasses
inherit from a generic skill class, which also has an Update
function in which all processing is accomplished.

Activities invoke their Skill objects' Update functions in the
appropriate order to accomplish their final objective. An
activity process can be implemented so that once processing
is complete, it halts and restarts from the beginning when
signaled to restart.

Another possible implementation of an Activity process is to
allow it to run continuously in parallel with all other
processes. These Activities can be stopped and started when
necessary.

Issues that are still being addressed include the prioritization
and coordination of the multiple agent processes. Deadlock
may be addressed through the use of some of the basic
survival skills discussed earlier. Agents are designed to
time-out when they do not receive information from other
agents in a timely fashion and to either report this condition
or take corrective action internally, if possible. Watchdog
agents will be created to monitor agent CPU and memory
usage and to shut down those agents that are not behaving
properly. These issues will be addressed in greater detail
throughout the next year.

Creating C++ Agents

Currently, C++ agents are created by hand. Every agent
class inherits from a base Agent class, allowing the user to

focus on adding the desired features to the new agent
without having to redefine the basic agent functionality.

The use of similar Matlab and C++ function libraries
simplifies the conversion of Matlab agents to C++. In the
future, a GUI will be created to perform this conversion
automatically given user preferences.

 5. SIMPLE REAL-TIME OA DEMONSTRATION

The first significant demonstration of the real-time
ObjectAgent architecture took place in November 2000.
During the demonstration, ObjectAgent/TeamAgent was
used to control the reconfiguration of a cluster of three
satellites.

Demonstration Scenario

The real-time demonstration scenario is a variant of one of
the reconfiguration scenarios performed initially by Schetter
[7] and [8] in the Matlab/Simulink environment. This
scenario was later modified for implementation in the pure
ObjectAgent Matlab design and simulation environment.

One cluster of three satellites was simulated. The reference
orbit was a circular orbit with a semi-major axis of 7100 km
and an inclination of 28 degrees. The three spacecraft were
placed in an elliptical trajectory relative to the reference
orbit. The orbits are described by the force free solution of
Hill’s equations relative to the reference orbit. The free
elliptical solution was chosen such that:

1. The free elliptical trajectory traced out a 2:1 ellipse in
the vertical plane of motion (x-z plane where the
coordinate frame used is the local-vertical, local-
horizontal (LVLH) frame of the reference orbit — x is
in the direction of the velocity vector, z is nadir
pointing, and y completes the right-handed coordinate
system);

2. The projection of the free elliptical trajectory was a
circle in the local horizontal plane (x-y plane) of radius
5 km; and

3. The free elliptical trajectory was inclined ±26.57° from
the local horizontal plane (x-y plane.)

The spacecraft were equally distributed about the ellipse.
The initial orbital elements of the three spacecraft are given
in Table 1.

Table 1. Demonstration Orbital Elements

 S/C #1 S/C #2 S/C #3

Semi-Major Axis
(km)

7100.003 7100.007 7100.007

Eccentricity 3.520e-4 3.524e-4 3.524e-4

Inclination (degs) 28.000 28.035 27.965

Longitude of
Ascending Node
(degs)

-0.09 0.04 0.04

Longitude of
Perigee (degs)

-179.92 -59.92 59.84

Mean Anomaly
(degs)

180.00 59.88 -59.88

One spacecraft was selected as the Cluster Manager and was
in charge of maintaining the proper spacecraft formation.
Upon receipt of a ground command to change the radius of
the projected formation circle, the Cluster Manager decided
where each spacecraft should move to by optimizing fuel
usage across the cluster.

These new positions were sent to each spacecraft and they
would then plan a series of burns to move themselves to
those locations.

Testbed Environment

The real-time testbed that was used for the development of
the demonstration is shown in Figure 5.

Figure 5. ObjectAgent Real-Time Testbed

The chassis on the upper-left side of the figure houses the
three PowerPC 750 boards. Each board represents one of the
three spacecraft and runs OSE and the real-time
ObjectAgent software. All communication among boards
and the simulation and development computers uses
Ethernet.

The simulation of the three spacecraft resides on the
PowerMac G4, located in the lower right of the photo. The
simulation is written in C++ and simulates the attitude, orbit,
and hardware dynamics of each spacecraft as well as the
space environment. The boards “sense” and “act on” the
environment by communicating with the simulation through
sockets.

The development of the real-time ObjectAgent architecture
is done on the Windows NT computer seen in the
background. This computer downlinks OA agents onto the
boards and monitors OSE processes in real-time. Ground
commands are sent to the spacecraft by sending OSE signals
from the NT machine to the real-time boards.

A similar testbed has been set up at the Air Force Research
Laboratory (AFRL) at Kirtland Air Force Base and is
described in greater detail in Zetocha and Brito [10]. The
AFRL testbed was used for the actual demonstration.

Software Agents

For the demonstration, each spacecraft board runs three
agents — a sensor agent, a thruster agent, and an orbital
trajectory agent. The Cluster Manager spacecraft has an
additional reconfiguration agent onboard.

The sensor agent receives spacecraft position, velocity, and
remaining fuel from the simulation. The orbital trajectory
agent plans a series of thrust commands that will move the
spacecraft from the present position to the desired final
position. This planning is performed using a simplex linear
programming technique. The thruster agent sends these
commands to the simulation at the appropriate times.

The reconfiguration agent is responsible for determining
where each spacecraft should go upon receipt of a change
formation command from the ground. This agent receives
the position, velocity, and remaining fuel from the sensor
agents on each spacecraft. It uses a version of the algorithm
presented by Campbell and Schetter [4] to select the new,
desired positions of each spacecraft by optimizing fuel usage
across the cluster. These desired positions are then sent to
each spacecraft’s orbital trajectory agent for the actual
maneuver planning. Although these optimization algorithms
had been demonstrated in Matlab, they were not available in
C++ at the time of the demonstration. Instead, upon receipt
of a reconfiguration command from the ground, the
reconfiguration agent sent a pre-determined set of new
positions to the three spacecraft.

Unfortunately, it is not currently possible to present a useful
plot of the results of the simulation. The spacecraft positions
can be viewed on the Macintosh screen in real-time and the
absolute positions are saved in a text file. However, we are
still developing the software tools for analysis and
visualization of the outputs.

 6. CURRENT STATUS & FUTURE WORK

The Matlab design phase of ObjectAgent is complete and
the next version is scheduled for release in December 2000.
This version includes more robust and reconfigurable agent
communications and relationships, error reporting, and
enhanced documentation and examples.

The initial design of the real-time C++ architecture is
complete and a demonstration of the reconfiguration of a
cluster of three satellites was performed in November 2000.

Following the demonstration, a review of the C++
architecture is being performed and improvements are being
made. Work will also begin on the development of a GUI-
based tool for the conversion of Matlab agents to C++. This
tool and the final C++ architecture should be complete by
March 2001. After that time, work will begin in earnest to
analyze and debug the various timing and priority issues that
will undoubtedly arise. Work will also begin on the
watchdog agents for software reliability.

Work is also continuing on the development of the real-time
agents that will be used onboard AFRL’s TechSat 21
demonstration flight in 2003. TechSat 21 is a mission that
will involve three satellites flying in formation and acting as
a “virtual” satellite.

ObjectAgent will be used to build two elements of the flight
software, the Cluster Manager and the Spacecraft Manager.
The Cluster Manager is a flight software package that
controls all spacecraft operations that require the
coordination of multiple spacecraft. It also provides
complete fault detection of all cluster operation related
systems. One of the primary functions of the Cluster
Manager is to perform relative control of the satellites in the
cluster. This will include relative stationkeeping and
estimation of the cluster center-of-mass and the relative
positions of each satellite.

The Spacecraft Manager is a flight software package that
provides an autonomous replacement for the ground
operations team. It will control all aspects of spacecraft
operation including fault detection and redundancy
management. The Spacecraft Manager provides an interface
between the Cluster Manager and the rest of the TechSat 21
flight software.

At the conclusion of development, ObjectAgent will provide
a robust, easy-to-use software architecture for the control of
distributed systems. The flexibility built into the system by
the use of agents at all levels enables software to be easily
configured and upgraded after deployment. ObjectAgent
also provides a common interface to many advanced control
and estimation techniques. Its applicability extends beyond
clusters of satellites to any real-time, distributed system
including robotics, autonomous vehicles, the automobile

industry, telecommunications and energy systems, and
process control.

 7. ACKNOWLEDGMENTS

This work is supported by two United States Air Force SBIR
Phase II contracts from the Surveillance and Control
Division of the Air Force Research Laboratory's Space
Vehicles Directorate. The contract numbers are F29601-99-
C-0029 and F29601-00-C-0025 and the program manager is
Paul Zetocha.

 8. REFERENCES

[1] Bernard, D.E. et al., “Design of the Remote Agent
Experiment for Spacecraft Autonomy,” 1998 IEEE
Aerospace Conference Proceedings, Snowmass/Aspen, CO,
1998.

[2] Bernard, D.E. et al., “Spacecraft Autonomy Flight
Experience: The DS1 Remote Agent Experiment,” 1999
AIAA Space Technology Conference & Exposition, AIAA
Paper 99-4512, Albuquerque, NM, September, 1999.

[3] Bradshaw, J.M. (ed.), Software Agents, Cambridge,
MA: AAAI Press/MIT Press, 1997.

[4] Campbell, M. E. and T. P. Schetter, “Formation Flying
Mission for the UW Dawgstar Satellite,” 2000 IEEE
Aerospace Conference Proceedings, Big Sky, MT, March,
2000.

[5] Dornheim, M. A., “Deep Space 1 Launch Slips Three
Months.” Aviation Week and Space Technology, April 27,
1998, p. 39.

[6] Knapik, M. and J. Johnson, Developing Intelligent
Agents for Distributed Systems, New York: McGraw-Hill,
1998.

[7] Schetter, T. P., M. E. Campbell, and D. M. Surka,
“Comparison of Multiple Agent-based Organizations for
Satellite Constellations,” 2000 FLAIRS AI Conference
Proceedings, Orlando, Florida, May 2000.

[8] Schetter, T. P., M. E. Campbell, and D. M. Surka,
“Multiple Agent-Based Autonomy for Satellite
Constellations,” Second International Symposium on Agent
Systems and Applications Proceedings, Zurich, Switzerland,
September 2000.

[9] Weiss, G. (ed.), Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence, Cambridge,
MA: MIT Press, 1999.

[10] Zetocha, P. and M. C. Brito, “Development of a
Testbed for Distributed Satellite Command and Control,”
2001 IEEE Aerospace Conference Proceedings, Big Sky,
Montana, March 2001.

Derek M. Surka is the Principal
Investigator on TeamAgent and is
manager of the DC office of Princeton
Satellite Systems. He has worked in the
areas of spacecraft autonomy and
control since 1994. He received his B.S.
from Caltech and S.M. from MIT and is
an avid curler.

Margarita Brito is an Aerospace
Engineer with Princeton Satellite
Systems. She is working with others to
develop ObjectAgent software to run
on the OSE Real Time Operating
System. In addition, she is responsible
for the integration of ObjectAgent
software into the AFRL TechSat 21

Testbed. She holds an MS degree in Aerospace Engineering
from MIT.

Christopher Harvey is a Software Engineer with Princeton
Satellite Systems. He is one of the lead developers of
ObjectAgent for the OSE Real Time Operating System. He
holds an MS degree in Software Development from Marist
College.

